Pom-Pom Bots — Sean White

20191106_184825-450x338

Hello everyone, for my project this week I wanted to try and make a four legged pompom bot using only two servos. Many robot designs for each leg use multiple servos to better control the position of the leg. I originally wanted to create a robot that would stand up and walk. I realized, however, that it would have been difficult to stabilize it. As a result, I went for a one that would stand on four legs and move. The two front legs would be attached to a servo and the two back legs would be attached to a servo.

This was my initial design:

When I initially was thinking about how to create this, I looked up only and saw someone did a similar four legged robot and showed a video of it moving. What I found out was that the key to making movement with only two servos was the angled base, so I tried to mimic this with the Popsicle sticks and attached the servos to them.

This initial design was simple in order to test out the mechanism and see if it works out correctly. What I found out was that the wooden pegs for legs did not offer enough traction to pull the robot forward. As a result, I added some foam on the ends of the feet in order to make it move better. I tested it out again, but there still was not enough force to move the robot.

This is what led me to figure out that the robot was too light. If I added some more weight to it, that would increase the friction of the foot with the ground and pull it forward. This is what led me to my Final Design:

The main changes I made to it were that I added the weight of the battery back and the screw to the front leg area. This allowed to create enough friction with the ground to pull it forward while keeping it in place when it move the servos back into position. I believe if I more evenly distributed the weight I could have made it move forward when it was moving the servos back into position as well, but I am happy with how it turned out. This is a video of it moving:

Adding weight through the second iteration was able to make it move. I didn’t really have an aesthetic design in mind when I was creating this, so I just ended up putting some of the puff balls and a bottle cap nears its front to make a head.

Overall, I had a lot of fun tinkering with the different aspects of the robot to get it to move.

Share on facebook
Facebook
Share on twitter
Twitter
Share on linkedin
LinkedIn
Share on pinterest
Pinterest
3D PRINTER (FDM)

Flashforge Finder

Print Material: PLA plastic

Max Print Dimensions: 5″ x 5″ x 5″

Slicing Software: FlashPrint

Preferred File Type: STL

Cost:

$2 | 13 grams or less
$0.15 per gram | over 13 grams

3D FDM PRINTS ARE PRICED BY WEIGHT (IN GRAMS)

Starting Monday, August 23

Fall Open Hours

Monday: 5-9PM
Tuesday: 10AM-1PM, 5-9PM
Wednesday: 5-9PM
Thursday: 10AM-1PM, 5-9PM
Sunday: 1-6PM

This fall we’re welcoming back all community and university members. Stop in and create with us!

Masks Required | Appointments Recommended

3D PRINTER (FDM)

Creality Ender Pro 3

Print Material: PLA plastic

Max Print Dimensions: 8″ x 8″ x 8″

Slicing Software: Cura

Preferred File Type: STL

Cost:

$2 | 13 grams or less
$0.15 per gram | over 13 grams

3D FDM PRINTS ARE PRICED BY WEIGHT (IN GRAMS)

3D PRINTER (LCD based SLA)

AnyCubic Photon

Print Material: UV Resin

Max Print Dimensions: 4.5″ x 2.5″ x 6″

Slicing Software: ChituBox

Preferred File Type: STL

Cost:

$5 | 20 mL or less
$0.25 per mL | over 20 mL

3D SLA PRINTS ARE PRICED BY VOLUME (IN ML). THESE PRINTS REQUIRE ADDITIONAL PROCESSING WITH CURING AND CLEANING.

LASER CUTTER / ENGRAVER

Universal X-600

Power and Type: 40 Watt, CO2

Max Bed Dimensions: 18″ x 32″

Max Cut thickness: 1/4″

File Creation Software: Inkscape, Adobe Illustrator, or other vector software

Preferred File Type: SVG to PDF

Laserable Materials: wood, acrylic,
See Additional Materials

Cost:

$7 | per 30 min appointment

ROTARY TOOL ATTACHMENT AVAILABLE

LASER CUTTER / ENGRAVER

Epilog

Power And Type: 60 Watt, CO2

Max Bed Dimensions: 12″ X 24″

Max Cut Thickness: 1/8″

File Creation Software: Inkscape, Adobe Illustrator, Or Other Vector Software

Preferred File Type: SVG To PDF

Laserable Materials: Wood, Acrylic,
See Additional Materials

Cost:

$7 | per 30 min appointment