Champaign-Urbana Community Fab Lab
Champaign-Urbana Community Fab Lab

Iteration Assignment Project – David He

Motivation and Initial Designs:

Looking at the Original

I decided to revisit my Copper Tape project since I had a bit of trouble originally completing the structure and getting the circuit to work, as the copper tape is very difficult to get working in series due to limited voltage.

link to the original project video

This time, I wanted to add in a bit of locomotion, adding in the canards and ailerons to the aircraft. To accomplish this, I would need to make use of Arduino and actual (thank gods) wires, building a more robust circuit and working with a more stable power source. Ideally, I wanted to find an Arduino PS2 joystick so I could add in some interactivity (i.e. all surfaces pitch up when the controls stick is pulled up, etc.), but I had to settle for having the control surfaces sweep back and forth. Since I wanted to add in space for servos and an Arduino board, I had to work with a bigger surface, prompting me to switch to the Laser Cutter and a 12″ x 24″ plywood board for the baseplate. As such, I had to upscale and modify my original paper template, sectioning off the control surfaces.

 

Build Process and Modification:

Prototyping

My first iteration was to get a basic feel for the circuit layout and size, so I used a 12″ x 24″ board as the base. It would later turn out that this board wasn’t large enough to accommodate the servos and Arduino Uno controller comfortably, so I would need to choose a bigger base for the later iteration. While laser cutting, the large board had warped slightly and this caused the laser to be out of focus at times due to an inconsistent z-distance. For example, note the minor offset cuts on the baseplate in the picture below:

 

The first issue was to attach the canards (forward winglets) to the baseplate via a servo. Since the canards were cranked at a certain angle, I had initially intended to tilt two servos, one for each canard, and rotate those independently. However, since space on the baseplate was limited, I decided to use one servo and link the two canards together via a bent paper clip. To prevent the paper clip from rotating in place from the servo’s control arm, I had to secure it in place with a bit of hot glue…

Okay, a lot of hot glue.

The first thing to get used to was working three servos in parallel. This usually would be a bit problematic with only two ground pins in the Uno board, so I had to hook them all up to the breadboard to get them working in parallel

For the prototype, I decided to keep it simple and simply attach the servos to the control surfaces (instead of using control horns and push rods as is the standard case with RC aircraft). After working with the Arduino IDE I was able to get the servos moving independently simultaneously:

Demonstration video link

For the next iteration I would like to add in the LEDs and work a bit more with Slicer to get a more 3D structure

Tags: , ,