Champaign-Urbana Community Fab Lab
Illinois Informatics and School of Information Sciences
Champaign-Urbana Community Fab Lab

Copper Tape Project

For my copper tape project I created a mothers day card. I wanted to include a silhouette of our family so I spent most of my time creating and editing my pictures on Inkscape.

Using the silhouette as my inspiration as to wear to place my LED, I could tell that it was difficult to see that my mom was the second from the left so I made the LED light her up from the background and used word “mom” to be the switch for the circuit. 

I hope she likes her card, I had a lot of fun using the silhouette cutter and editing the pictures on Inkscape. 

Continue Reading

Final Project

For the final project I chose to make a skirt for my mom. I chose to use linen for skirt so it was breathable in the summer, and I chose linen over cotton just so I wouldn’t have to add a slip layer if because most of the cotton fabrics were see through. 

I found a tutorial for a half circle skirt and followed it accordingly so I wouldn’t buy too much fabric as I had done for my iteration project and wouldn’t be “winging it”. 

I first started with cutting out my fabric. Since the measurements were very exact (math and radii were involved) and the skirt was very long I used measuring tape and chalk in a way I never thought I would.

strategy to make a circle (tape chalk to the edge of the measuring tape so I could keep track of the radius)

Afterwards I started the sewing process. This was a bad idea because when it came time to print the design on my fabric, I had to wait for the paint to dry before flipping my skirt around and print on the backside rather than just print on the separate pieces and then sew them together. 

My original plan was to have embroidered flowers on the bottom of the skirt but the spacing of the prints was so close together that I decided that big embroidery would just crowd the skirt and make it too busy. My original idea was also to include buttons but I also didn’t end up doing this because of the same reason. The skirt looked very incomplete without anything so I wanted to do a border along the edge because I knew it wouldn’t disrupt the flow of the skirt or make it look too busy and unwearable. 

Chose to do a satin stitch without the embroidery machine

In this project I learned how to do a hidden hem with the blind stitch foot but because I was dumb I didn’t realized that my white bobbin thread was showing on the front of the skirt so I tried to cover it with the satin stitch I used for the border but I couldn’t make the width of the stitch smaller to cover the hidden stitch as the fabric kept getting caught in the machine. 

By the end of this project I learned so many new skills and learned to make a clean finished product without and compromises to quality. I first started out this semester with a jean skirt that I will never wear because I’m too afraid it’ll rip every time I sit down. Now I’ve made a skirt I’m confident my mom can do whatever she wants in. 

 

By following the tutorial and applying all the skills I learned from my iteration project and the new techniques I learned from my TA, Duncan, I was able to create a something I would proudly say I made and give my mom. Working with a plan and a design in my head and on a schedule, I made something that I think is very high quality. 

Continue Reading

Final Project (AirB&B)

Siena Walsh

I’m very proud of my finished project “Air B & B”. From inspiration to completion I really put my heart into this project, and I hope that it is as successful out in the garden as it can be! For my final project of INFO 490, I decided to build an insect hotel. An insect hotel, also known as a “bug house” or “bug hotel” or “insect house” is a structure, usually box-like that provides shelter to various bugs. It’s made of materials that promote nesting, and it’s a great addition to any garden not only so that you have more pollinators enriching your plants, but also so that the insect populations can flourish.

The idea for this project came to me during Earth week. I had been thinking a lot about sustainability and what it means to be a friend of the planet. It’s not enough to simply do less harm, we’re at a point where we really need to take action to reverse some of the detrimental practices that humans have undertook. I was also inspired by the story of the bees surviving the Notre Dame fire.

A really brief recap of the steps I took is that I used various materials to create a box, Inkscape to make a sign, and various materials to fill the insect house. Some challenges that I ran into were not accounting for the time it takes wood glue to dry, not expecting the nail gun to run out of battery and running out of recycled paper and cardboard for reeds. I’m most proud of the fact that I used almost every tool in the woodshop. I came in with zero experience, and very intimidated but with Brandon’s help I feel like I really conquered some fears.

 

    

 

For this project, I decided to challenge myself in two very different ways. For the first, I wanted to use only recycled and reclaimed materials and for the second, I wanted to challenge myself to stick to a schedule that gives me more than enough time to complete the project.

I chose to use only recycled and reclaimed materials to continue the theme of sustainability. I recycle at my apartment, but I still feel like those materials can be given a second life before being recycled. Collecting paper and cardboard materials made me more conscious of how much waste my roommate and I produce every day. Someone recently shared a quote with me that said, “what is measured can be improved” and taking note of how much paper I use has definitely helped me reduce my paper consumption. I also visited the Urbana Landscaping Waste Reclamation facility for many of the logs and branches used in this project. The pine cones are old Christmas decorations (unvarnished), the reeds consist of toilet paper rolls, an old tiki torch, pasta boxes, and even a parking ticket, and even the fake flowers are being given a second life. To be fair, the glue, tape, and laser cut sign are all new products, but I couldn’t think of an alternative that would be as secure.

The scheduling challenge was definitely harder. There were a few hiccups along the road that made me redo my schedule completely. I realized that it’s better to get a lot done in the beginning, than spread it out over time. I didn’t account for the time it would take the glue to dry, so I initially had sanding and making the shelf on the same day. I also wasn’t expecting the nail gun to run out of battery after 4 nails, and the Fab Lab to not have the charger. I also didn’t account for fatigue. Using a lot of the tools involved more manual labor than I thought. The hand drill required a lot of strength, and the tool I used to cut the backing was so powerful it made my hands feel numb. I made enough reeds to be satisfied at this time, but I think in the future I will improve the insect hotel by adding more. I initially had more time for “reed making” specifically in my schedule, but other things chipped away at the time, and redundant tasks should be more spread out.

The most significant thing I’ve learned over the course of these assignments is to give yourself like 4 to 5 times the amount of time that you think a project will take. I need to account for not only the physical process but the mental process as well. I didn’t write about it as much in the write-ups as I could, but some of these projects took a lot mentally and emotionally. I was so stressed and fed-up with the 3d printing assignment that when the BIF lab employee broke the product it took me 3+ hours to make, I almost cried in class. The sewing/embroidery assignment was also a nightmare because I had 99% of my embroidery done when the machine somehow started printing my design over itself. I think anything involving creating is really heavily tied to the creator’s emotions, so that when you make something nice you feel really proud and accomplished. But when something goes wrong, it’s hard to not think of yourself as a failure. Or at least that’s how I take it!

But all-in-all I feel much better coming out of the class and having tons more skills under my belt. I’m willing to try some methods again, although scary, and I feel confident enough to teach others some of the things that I’ve learned. I definitely want to try and find a makerspace near me when I return home this summer. I think they’re amazing institutions that provide people with the opportunity to learn new skills, especially without much investment. I personally can’t afford a laser printer or an embroidery machine, and the Fab Lab has made that financial barrier nonexistent. I learned so much and had a great time doing it. I’m really grateful for the Champaign-Urbana Community Fab Lab, and I hope that so many others are able to have this experience in the future.

Continue Reading

Final Project: 7(+) Rings

Subtitle: this is all just for me, really. Also I’m writing this on a plane on limited sleep so I apologize if it’s a little unclear at points.

 

Question 1: (Sorry I know this wasn’t supposed to be a full write up but I ended up explaining a lot of it anyway).

My final project was, in a few words: Rings Made Out Of Multiple Materials That I Can Make Myself With Some Level of Customization.

These are the final products that are the rings!

And, because the entire project ended up a little more resin-centric than expected, the rings + some other fun side things I made with leftover resin (I’m not the best at approximating volumes.)

The process to get to the end was pretty winding. I didn’t start out with the clearest idea of what I wanted to do, beyond the most basic idea. I picked up and abandoned multiple methods of making rings once I learned what they did- and what they were and weren’t well suited for. (Such as the CNC mill). I wound up settling on resin, partly because I’d gotten stumped on the other methods and also because I really liked the idea of suspending whatever I wanted in rings.

Now, in order to make something in resin, you need to have a negative- aka, a mold you can pour into, that will harden into the shape that you want. With resin, either the mold has to be able to flex, or you have to be willing to completely destroy the mold every time you use it. I ended up settling on a rubber pour-over mold, which was pretty fun even if the mixture was getting kind of old and congealed.

(I also made an effort with a wood mold towards the end, but I should’ve used way softer wood for the centres, because I wound up not being able to pop the centers out.)

To get the rubber mold negative, I needed a positive. So I laser cut some wood rings to serve as the positive, and in the process, realized they looked pretty nice on their own. That’s actually where the majority of the rings came from, given that the short timeframe I’d given myself and the 24 hr curing time needed for resin didn’t play super nicely with each other. I’m actually really proud of the wood rings, because they were simple in execution and came down a lot to what I thought looked nice or didn’t look nice, which isn’t something I get to do a lot these days.

 

The resin rings were fun to make too! I’m really proud of how I ended up managing to incorporate metal; by taking little bits and shavings and using those as the suspended pieces in the ring. It looks pretty cool, and I also like how resourceful it makes me feel. There was more than one resin ring made, but they come out cloudy when you first pop them out of the mold, and I only successfully polished one, which is the one in the majority of the photos.

Not everything was smooth going. The rubber mold mixture was a little difficult to work with given the not-really-liquid state of it, so the molds didn’t come out entirely smooth. I think given a few more tries, I could’ve figured something out to make the edges a bit cleaner. The biggest issue with the resin was the 24 hr curing time; it’s on me, some, for setting myself up with not too much time, but I think I’m also just a little impatient, and 48 hours per each round of rings (combined rubber mold curing + resin curing + about 4-5 hours in lab each time I was working on the rings) is just a little too much. It’s even more if you do things correctly and suspend layer by layer so the suspended material doesn’t sink to the bottom over the curing time.  I am just…. Too impatient.

 

Question 2: I actually fell through on a majority of my initial plans for the new skills. I do plan on coming back to learn to use the lathe at a different point, and I might do the same for the CNC if I have any ideas that might make good use of it. I did brush back up on my Universal laser cutter skills, but not the epilogue. After everything, however,  I did learn a lot about resin casting, and some about pourover rubber molds. I’m pretty happy with the depth vs breadth tradeoff here, and can definitely see myself working with resin on personal projects. …Assuming no strict timeline, that is.

 

In terms of my other goal- I think I achieved it? For this project moreso than others I was driven a lot more by something that I wanted, that I physically wanted to have and fiddle with. As a result, I think I was a lot more content with the result, even if it went off the rails a bit from what I expected, because I still wanted whatever random thing I was going for. Concessions made because of time or unexpected limitations felt less like concessions and more like… an alternate route. I still want to try again on the resin, but I am also genuinely happy with what I have/learned/got out of the experience, more so than I think I was with previous projects.

 

Question 3: Two big things: Iteration iteration iteration, and the knowledge that it doesn’t hae to come out perfectly on its first iteration, or even whole. Part of the issue is, of course, giving myself the time to iterate, but also to counter my tendency to do The Entire Project At Once Right Now because sometimes I get overexcited and try to actualize everything I’m imagining at once instead of, like, learning to do things in steps. (See: sewable LED, even the resin rings to a small extent). I think that tendency has also stopped me from doing personal projects in the past, because specifically for personal/art projects, I don’t like starting unless I think I can do it well. But, among everything else, this class has hammered it in that sometimes you just need to start, and be willing to let the first prototype be less than ideal. Maybe this is just leftover habits from too much procrastination; either way, the class has been a very, very valuable reminder of why Iteration!!! Is so important.

 

Question 4: I have a lot more small skills that I really value, now. For stuff like learning how to use certain tools and machines, I always really want to learn, but am very bad at asking people for help. I then try to learn things on my own, but self driven teaching can be hard, especially when its not something that Needs To Be Done. This class was an excellent way for me to get over that first hurdle of just learning how to use the thing, so I can then use those skills however I want.

 

I’ve always had a particular love for hands on stuff. Most of it was in the 3d realm, with stuff like sculptures or figures/animals made out of pipe cleaners or twists ties or whatever I had on hand. I also have a particular fondness for power tools. I love making things with my hands- that was nothing new, but I think it’s a pasttime I kind of had to put to the wayside in recent years. This class was a good reminder of why I love this kind of stuff so much and also a very compelling incentive to keep it up afterwards. I think I always scounted myself as  alittle of a maker, but now I remember that I can still continue to be one, as extremely cheesey as that sounds.

Like, all joking and assignments aside- I really, genuinely loved this class a lot, and the way it was taught. It was an excellent experience and I regret almost none of it.*

 

*the almost is there to account for the 10 hours spent on copper tape. Curse you, copper tape. I love you, love me back.

Continue Reading

Final Project Reflection

For my final project, I was inspired by a pokéball-themed Nintendo Switch cartridge case that I found on YouTube.  My initial idea was to make six pokéballs and case/stand based on the recovery machine in pokémon centers. After considering the amount of time needed to complete the project, I cut the number of pokéballs to three, and changed the idea for the case/stand to the incubator that contained the three starter pokémon in the first episode of the anime.  I also decided to have one of the pokéballs contain a small Pikachu plush rather than Nintendo Switch games. With that in mind, I needed to decide what pokéballs I would make. I, initially, was going to make one regular pokéball, one master ball, and one unique pokéball that I would design. After discussing my idea with Duncan, it was decided that I would instead design three unique pokéballs.  The two pokéballs that would hold Nintendo Switch games would be based on the Overwatch logo and the Smash Ball item from the Super Smash Brothers series. The last pokéball would be based on Pikachu.

 

I had quite a few challenges in this project.  The spring releases weren’t as strong as I had hoped they would be.  I had some trouble keeping the buttons positioned so that they could hold the balls closed.  I had multiple parts break during assembly, and two parts fail halfway through their prints. I hadn’t anticipated that so many parts would break, so that threw off my schedule for the project.  Due to this shift in my schedule, I was only able to paint two of the pokéballs and use a primer on the case/stand. Despite the setbacks, I am very proud of how well the Smash Ball came out. I also feel that the laser print design for the case/stand came out well, considering that it was my first time using Fusion 360.

Overall, I had three learning goals: Improve my time management by making a schedule of what I needed done by a certain time, making more use of the tools at my disposal, and asking for help whenever I was confused.  I did accomplish my learning goal of making a schedule for better time management, but I did not account for the possibility of parts failing. Not including the case/stand, I needed to print fifteen separate parts. I began printing on Thursday with a plan of printing six parts that day, four on Friday, and five on Sunday.  I created this plan factoring in that on Friday and Sunday I would only need to use 2 printers at once, so that I wouldn’t be preventing others from completing their own projects. The plan seemed realistic, but I did not anticipate that multiple parts would fail. The setbacks caused by the broken parts caused my plan to fly off the rails, snowballing to the point in which I was having the last two parts of one pokéball printing from Monday night to Tuesday morning.  Due to this result, I feel that I only partially accomplished my goal. I created a schedule, but I failed to stick to it due to a lack of flexibility in said schedule.

I definitely feel that I made use of the tools at my disposal while working on this project.  When I made my 3D Printing and Scanning assignment, I simply imported my scans into Meshmixer, used the analyze tool to fix any errors, plane cut them, and then moved it over to Tinkercad to stitch the scans together.  For this project, I actually used different tools such as inflate and flatten in order to morph the pokéball shells into the shape that I desired. I used Fusion 360, a software I had never used before, to design the laser printer file for the case/stand.  I used power tools for a project for the first time. I needed to use a drill to widen the holes of the hinge of each pokéball. I actually also had to use a soldering iron and a heat gun for the first time to help secure the buttons into place. I also did foam smithing for the first time, using contact cement to glue foam to the wooden skeleton of the case/stand.  I also painted something for the first time since I was about 6 years old, so that was fun. I definitely feel that I accomplished my goal of making better use of the tools at the fab lab.

For my final goal, I made sure to ask questions.  Typically, when I feel stuck in a project, I would sit feeling defeated for a while.  This time, I made sure to ask questions as soon as I felt that I did not know what to do.  One person that I cannot thank enough is Brandon, who helped me with a large portion of my project.  He taught me how to use Fusion 360 so I could design the case/stand. He taught me how to use a soldering iron and heat gun, and how to do foam smithing as well.  When I was feeling lost after my parts broke, Brandon helped me get back on track by helping me with the case/stand while new parts were printing. I am very thankful for all of the help I received while making this project.  If I hadn’t been asking questions as soon as I had, my project would have been in much worse shape.

Over the course of the semester, I feel that I truly did learn something in this class.  Before this course, I never really went out of my way to make new things. In this class, I learned how satisfying it is to come up with an idea and bring it into reality.  Before this class, I never thought I would ever need to learn how to sew. Surprisingly, I would say that the project I am most proud of is the stuffed animal that I made in the Sewing and Digital Embroidery assignment.  I may have gotten frustrated at one point while making it, but overall, I truly enjoyed making it. This class has definitely improved my confidence as a maker.

This class has made me feel different about the very concept of making.  Since high school, I have wanted to work in some sort of lab as a chemist, making different products for the company that employs me.  Whenever I thought of the word “maker,” I always felt that the term applied to a select few that create inventions that have a lasting impact on the human race.  This class has taught me that anyone can be a maker. This class gave me confidence in my ability to make things. It really showed how anyone can make something if they have access to the tools to create.

One of the most important lessons I received in this class is that it’s not the grade that matters; it’s the effort that really counts.  I eventually got to a point in which I stopped caring about my grade, and started caring more about the projects themselves. I’ve enjoyed a lot of classes in my four years at this university.  This is by far the most fun I’ve had in a class. Thanks to this class, I feel that I will feel more confident when asked to make something.

Continue Reading

Arduino Jacket – Final Project

Question 1

I integrated a computer into my jacket, so that I could play a game on my jacket sleeve!

I used an Adafruit Flora as the computer that controlled the game, and I used sewable circuitry – particularly conductive thread, sewable LEDs and conductive fabric as the inputs and outputs of my game.

A big focus of this project was that this was my only denim jacket – I wear it a lot. I wanted my computer+game design to be robust against the normal usage conditions of the jacket. I roll it up clip it onto my bag, or I wear it on the nasty subway, or I wear it when it is raining. I wanted the computer to be safe from the dangerous environment, and I also wanted to be able to wear the jacket in all the normal situations that I’d wear it in.

I decided that the computer will be positioned inside one of my jacket pockets. That way

  1. it is not exposed to the external environment, AND, 
  2. if it gets loose and falls off, it safely falls into my pocket, and not on the ground.

The computer is still a very delicate item, so despite the pocket safety measure, I wanted the option to remove the computer in a modular fashion. Traditionally, the Flora computer is sewn onto the textile (this would be tough to modularly remove a sewn on item). Instead, I attached the Flora to my jacket with snappable buttons (now its modular, I can unsnap the buttons attaching the item to the fabric).

The way this works is that the LEDs and buttons are sewn onto my fabric with conductive thread. The electricity on these threads is supplied by my computer. so these same threads from the LEDs need to connect to my computer. Instead, the LED threads are attached to the male ends of snappable buttons, which are sewn onto my fabric. The female ends of the buttons are attached to the input/output pins of my Flora computer. When I want to create an electrical connection between the LED thread and my computer, I join the male and female ends of the snappable buttons. The buttons conduct electricity and act as an interface between the computer and the thread sewn into the fabric!

I initially planned to solder the female ends of the buttons onto my computer. The solder would act as a “conductive glue” between the computer and button. This was a hard task, and the force exerted by the button-unsnapping process would always break the solder-connection I had created. I spent a lot of time trying to perfect my soldering process before I gave up. This was the biggest challenge of this project.

I’m most proud of how I solved this problem. Originally, The solder was acting as a “glue”, and a “conductor”. Instead, I used superglue as the glue, and conductive thread as the conductor!

With this method, I circumvent another issue. Some snap buttons can be large, and they run the risk of either touching adjacent buttons or touching adjacent I/O ports. As seen in the above picture, I can glue some buttons far away from their respective I/O port and adjacent button, to ensure there’s no accidental touching of circuitry. I just need to create a longer connection between button and port with the conductive thread.

Question 2

My learning goals were to 1) work with electronic textiles, and 2) also work on a project design that is entirely my own and iterate that design.

I believe I successfully accomplished both goals. I invested a lot of time into understanding how conductive thread and sewable circuitry works, I looked at many different implementations to understand the best practices, and I practiced my sewing technique and improved it majorly also. I hoped to learn how to properly “think” about a sewing project – what are the challenges, what difficult decisions need to be made, how to problem solve on a sewing project. I did learn those things, and I also unintentionally learned how to fix or undo sewing mistakes!

For my second goal, my whole project was my own conception, I borrowed the concept of making the Flora modular with snappable buttons, but I iterated that design by using superglue and conductive thread instead of solder. My design involved 2 types of circuits, so I made sure to sew those circuits into a woodframe and test that my technique would work correctly. After finishing sewing any thread line or snap button or any electric component, I stopped to ensure that the electric connection was still “correct” and worked. This allowed me to catch mistakes early, fix my technique and not repeat those mistakes.

I’m very happy with project, specifically because of how rewarding the learning process was.

I invested a lot more mental, physical, critical effort in the process of learning, and then I felt smart when I applied my new knowledge.

Question 3

What really stands out to me upon re-reading past write-ups is that I was very conservative with my projects. I was afraid of failure, so I tried to structure my projects around the simplest techniques that had the least scope for errors. It shows because I rarely ran into road-blocks and was rarely forced to think laterally and problem solve. I would instead try to change my project to fit the outcomes of my practices.

With this final project, the requirement of formulating a challenging proposal within the structures of the two chosen learning goals was very helpful. It made me iterate my technique and process to fit the project instead of vice versa.

I really feel much more confident as a maker now – I understand now that failure isn’t such a big setback, and that working on sub-samples of the problem will allow me to catch my failures earlier and spend lesser time overall. Because of this, I feel comfortable trying new techniques and incorporating creativity into my problem solving.

Question 4

People often say that your life can turn out completely different than what you plan out of college. You can work on something thats entirely outside your major, and you can be working in a work culture that you didn’t think you’d enjoy. I could not see myself in this position, adapting to my environment and pivoting my life’s direction. Its a little extreme, but I feel differently now.

Working on this project, I’ve shown myself that I can work in a domain outside my expertise (sewing and textile) and adapt and excel. Additionally, I can make a new domain my own by incorporating my expertise in other domains. I didn’t see myself having such flexibility, but now I think my mind has opened to the possibility. I was a little scared about making E-Textile the focus of my project, but I handled it just fine. Now, I wont say “No” based on my prior judgment, because I have the potential to surprise myself. I believe being a “maker” also means not saying “no”.  You have to be able to think on your feet and “find a solution” in the making process.

I learnt the E-textile process by working hands-on on a project that was personally meaningful to me. Both factors really accelerated the rate at which I learned e-textile. I cannot think of another circumstance that would have been more conducive to my learning process. I feel so confident in my abilities to sew circuits into fabric right now.

Continue Reading

The Emulation Station

Concept Emerges.

Our last assignment! This project is supposed to be reflective of what we learned about the design process this semester. We had tasks such as: story boarding, paper prototyping, iterative assessment, and more! The only catch for this assignment was that we had to use a medium/tool that we have never used before. In the past we have always been given or had the option to use tools that we have learned in class, so this was all new. At the beginning, we were given a sheet of possible tools to choose from. Upon scanning the sheet for the first time, I saw “raspberry pi” on the list and immediately snapped into wanting to make a video game console. I have seen this done in the past, so I knew it was possible. I just had literally no idea of how to approach making it. 

For the storyboard, it was simple. I wanted to make a portable device that could play games, play them well, and be able to have more than one players playing. 

Picture 1: Initial Storyboard

Little did I know, this idea was ambitious to the point of being impossible. To start off, the games I wanted to play (gamecube) proved to be fundamentally impossible for the pi to run. Many forum posters say it is due to the pi not having a 64-bit architecture like the gamecube does. This is false because I ended up running N64, “64” for 64-bit architecture, games pretty well. In short, the pi just does not have enough power to run the games making it literally impossible to make a custom game cube out of a raspberry pi. To rectifiy this I went back a generation of game consoles to the Nintendo 64. Emulation for this console would prove sketchy but doable! To continue, I wrote “4 Players!!” completely ignorant to knowing what a “player” actually is. A player is something that is giving input that the console needs to read and execute. This is much more taxing on the cpu than a simple AI that doesn’t have inputs but only executions. So, this project was whittled down to a portable N64 game console that could support up to two players and run at 60 frames. 

Research

One of the first steps I had to take was purchasing a raspberry pi. I took about 30 minutes for me to make a decision between the Raspberry pi 2 B and the pi 3 and went with the 2B in the end. The Pi 3 did offer more processing power for 10 bucks more but many said I could emulate the same with a 2b. I took “the same” as the 2b has enough power to run the game flawlessly. I’m glad this was wrong. If the games ran flawlessly I wouldn’t have much to do. Instead, I learned a bunch about computers along the way. 

The other sect of research I had to do was how to interface with the pi. I quickly found that there was an OS designed to emulate games on the pi called “retropie.” To interface with the pi, I need to load an operating system (OS) onto a micro-SD card and boot the pi from there. Getting the OS loaded was easy. Put the micro-SD into a SD adapter -> Put the SD adapter into my computer’s SD slot -> Unzip a folder containing the OS called “retropie” -> Reinsert the micro-SD back into the pi and boot. Research did not take as much time as I thought it would take so I started to worry about if what I was doing was enough. Luckily the pi I bought was nowhere near perfect. 

The Meat and Potatoes

The meat and potatoes of this project was the optimization of this tiny computer. Many hours were spent within menus tweaking aspects of the pi that would either allot me more power or optimize a process. 

Picture 2: My desk during this whole project!

This amalgamation of cables would be my own little raspberry pi lab for the next week and a half. Two monitors, a laptop, 2 keyboard, 2 mice, 2 usb N64 controllers, my pi, and my desktop. Laptop was for loading software/games to the raspberry pi. Desktop was for debugging research. One monitor to interface with the pi. A keyboard to navigate the pi’s command prompts. Finally, the controllers to test game play. This picture was not necessary, but it was amusing to me! 

Picture 3: The raspberry pi 2 model B

This is the Pi I used for this project. In the middle of the board you can see a big green block of metal and a smaller grey block of metal to the right of the green block. These are heat sinks. Heat sinks act as a form of cooling without the fan. Heat is taken from the processor (green) and the Graphics Processing Unit(GPU, grey) and sent upward thorough the little fins. These fins proved crucial as they reduced the temperature of the pi running N64 games from 70 degrees C (highly dangerous) to around 58 degrees C (not highly dangerous). Outside to that modification, the rest of the board is run-of-the-mill. 32GB micro-SD (middle left), micro-USB power supply (bottom left) HDMI (bottom), Ethernet port (bottom right) and 4 USB 2.0 ports (top right).

Image result for retropie config menuImage result for raspi config advanced options

Pictures 4&5: Raspberry Pi configuration screen (left) Advanced configurations screen (right)

I am going to do a quick run down of each of these screens’ options and how I used them to benefit me or why I didn’t use them.

Raspi config, left

  • Expand File system: This formats the SD to the raspberry Pi, already done on my computer
  • Change Password: Security measure, no password was used doubt someone will hack my pi
  • Boot options: Could choose to boot to this screen or the OS, I did OS
  • Wait for network at boot: Have to be connected to the internet to use the Pi, this was disabled.
  • Internationalization Options: Everything was in English so I did not touch this.
  • Enable Camera: You can connect a camera via ribbon cable to the the pi, cameras are not needed for video games.
  • Add to Rastrack: Online pi data tracking
  • Overclock: I had to enable overclocking on my pi. Bumped the processing power from 900Mhz to 1000Mhz. A 7-10 frame difference in testing.
  • Advanced options: see right
  • About Raspi-config: A READ ME file about what each of these menu options does. 

Advanced options, right 

  • Expand File system: I do not know why they had this twice
  • Over scan: Naturally games have these ugly black bars around the screen. Before messing with this, about half the screen was black bars. Over scan eliminates these bars making the game easier to see 
  • Memory split: Oddly enough, I did not have to touch this option. I had the games running at 60 fps without touching it.
  • Audio: One can either play audio through the 3.5 mm jack on the board or through the HDMI. By default, it was through the jack so I changed it to HDMI.
  • Resolution: For some reason, the resolution was really high out of the box. Old games do not need high res do I bumped it down to 640×480. Doing this would put less stress on the GPU and processor because there is less on screen imaging to process. Also, there is a hertz associated with a resolution. This number of hertz is a hard cap at the amount of frames a game can be outputted to the monitor. There were options for 50hz resolutions but this would hard cap our game play at 50 frames, not ideal. 60 hertz for our desired 60 frame gameplay
  • GL Driver: For experimental versions of pi. Did not use.

Picture 6&7: Game Emulator Menu (left) picture taken of the emulation (right)

Each game on the pi is given its own emulation menu from which to control aspects of that games emulation. Every game is a tad different so they must be emulated different. 

  • Default Emulator: Always picks the most powerful one which is the worst one.
  • Select Emulator: Can choose from 7 emulators. The one I picked, “gles2n64”, prioritizes game play over graphics leading to smoother game play but bad in-game menus and the lack of eyes from smash bros characters (right).
  • Remove emulator: Removes the emulator. I do not understand this option’s purpose.
  • Default video mode: I did this back in the raspi-config menu. CEA-1 is the 640×480 resolution.
  • Remove video mode: Removes the video mode. I do not understand this option’s purpose.
  • Select frame buffer: Having a frame buffer makes it so that input is separated by frames. Once can press four buttons at once and have them all be read or, with a frame buffer, can have the first button pushed be read while the others are not read. They are not read because the frame buffer counter is not up. This can make games seem more fluid. Games already have their own frame buffers so I did not use this option.
  • Launch: launch the game and play it. 
  • Exit: save the settings and do not play the game.

The final thing I did was turn off something called retroarch.h settings. Retroarch was a controller setup program that made it so that one could have a specific set of controls per each game. Turning this off allotting me more cores towards emulation.

Overall:

  • Overclocking to increase processor power
  • Changing resolution to decrease computing stress and give the ability for 60 frames per second
  • Fixing over scan to conform the game to the screen.
  • Audio to HDMI
  • Finding the right emulator to show the game
  • Disabling undesired programs (retroarch.h)
  • Adding heat sinks to my CPU and GPU to decease temperature.  

All lead up to a game console that:

  • Can be played for hours without over heating
  • Supports two players easily
  • Can fit in your pocket
  • Can conform to any TV
  • Can hold 32 GB worth of N64 games (biggest game I saw was 50mb, so 640 games!)
  • And most importantly, run at 60 frames per second.

I could go on about how important to me it was that I managed 60 frames. It just produces the best game play bar-none.

Finishing Up

The last bit I had to do was make a box! For this box I laser cut a press fit box. I could have 3D printed a case but a pressfit box took less time and looked better. 

Picture 8: The pressfit case.

I used an online generator to produce a .svg file of a pressfit box. All I had to do was add holes for the ports. Picture 8 was a little bit too small so I had to reprint, the concept was there tho. The reason I cut holes in the top of the box was to allow for the heat to rise. Don’t want our console to overheat after all the work we had done to it.  

Presentation

Picture 9: Console presentation

The presentation went better than expected! I did not run into any issues testing at home pre-presentation but that doesn’t mean bugs will not creep up! This presentation ran for 90 min and the console maintained quality throughout. I had a couple people that stayed and played for awhile. I defiantly got more praise for it than I thought so needless to say I was proud of myself!

Reflection

At the start of this project, when I had to establish learning goals. I said that my tech learning goal was to be able to use raspberry pi as a prototyping device in the future. As for what I would be prototyping, I do not know, but I have the know how of manipulating the pi to get a desired state. Somthing I just thought of being to prototype, as I’m writing this, would be a smart speaker. There is a ribbon cable spot for a screen so one does not have to use HDMI. Then there is the 3.5mm jack for audio. The micro-SD for storage and USB for a Bluetooth adapter as well as speakers them selves. One could use all these aspects to run Spotify on a tiny LCD and play music over Bluetooth (wifi if you have the pi 3).

It is baby’s first computer is what it is, low barrier to entry. A good place to start if one would like to tinker with computational architecture. Which leads me to my educational learning goal. I really wanted to learn how a computer works. I’ve built my own desktop before but that was all plug and play. I’ve never had to manipulate anything on the back end. Going in, I thought I would be just turning down the resolution and overclocking. What I ended up doing was min-maxing cores of the processor. Working in command prompts was also new to me so navigating those was troubling. It was almost like a text adventure but instead of giving command you are writing codes to change directories and call certain programs. Next time I will have to work with computers on a more intricate level I will think back to this project to see if what I did could help. 

Continue Reading

Final Project

Question 1: Show us what you made for your final project.  Include at least two in-process photos and two final photos (or videos!) of your final project. Include a couple sentences about what challenges you faced and what you are most proud of but do not write a full step-by-step report of what you did.

I developed a fun strategy-based board game that can be played by multiple players. The game is turn-based and contains mechanics such as chess-based movement and attacking other players. The board is a rectangular grid. Players move and can attack other players. There are obstacles which players can use to shield themselves from attacks from other players. Power-ups are used to enhance offensive bonuses.

I faced several challenges along the way. One part was what technologies I would use. I downloaded models from Thingiverse and printed them with the resin printer, which turned out to be very detailed. Another was printing out the barriers, as with 3D printing it took forever and I was on a time crunch. I consulted James and he provided suggestions such as laser-cutting pieces and assembling them together, but I ultimately did not apply this idea because my project would require me to do those prints 30+ times, which was not feasible in my opinion.

Another challenge was the overall design of the game mechanics. I consulted my friend Miguel, a board game specialist, and asked him for his input on the game rules I had devised. One major implementation that he designed was the concept of a counter-play, since before, players would have no method to defend themselves against an attack.

In-progress pictures of the materials:

Question 2: What were your learning goals for your final project? Write at least one paragraph per learning goal about what you hoped to learn as you worked on this final project and what you actually learned.

Some questions to help your thinking: What did you learn that surprised you? Did you meet your goal? If you failed to meet your goal, how did you iterate your plan and what did you learn in that process? Are you happy with your final project? Is your final project meaningful to you? Why?

 

My learning goals for this project were: to use a new technology that I have not used before, and to push my creativity with this project and come up with unique game ideas. This project would essentially build upon the skills I have learned so far in this class, combining multiple areas into one.

I hoped to learn new technologies. I considered using neopixels for a cool effect but due to not having enough time, instead I opted to learn watercolor painting and produce my materials with different technologies, such as resin printing (which produces more detailed prints) and acrylic laser-cutting (which produced a really nice texture).

I also wanted to create a game that was creative and that people enjoyed. This is pretty difficult overall and even though I spent time considering different pros and cons of gameplay and that I like playing my own game, I am unsure if it would appeal to a wider audience. Rules and game play will have to be carefully tuned to ensure that the game makes sense and is playable, and is one that is truly strategy-based.

I think overall I met both of my goals. I like my game and think the outcome turned out decently.

 

Question 3: After rereading your lab assignment write-ups, what is the most significant thing you have learned over the course of these assignments? This is not a question about tool learning, but rather a question about yourself as a learner.

Some questions to help your thinking: Have you become more comfortable with certain kinds of tasks? Have you surprised yourself with what you enjoyed doing? Do you feel you’ve developed your confidence as a maker and what does that look like?

 

This class taught me how to pick up new technologies and how to learn them effectively. I think my TA Emilie accomplished this quite well in her instruction of my section. These assignments would include a short lesson and then building a very simple product, and then creating more complicated versions that would be used in the turned-in lab assignment. Initially I was uncomfortable and wasn’t sure if I should stay enrolled in this class because of the implications of having to force myself to be creative, but I turned out to like it, and so I’m glad I stayed because I’m proud of myself and the things I’ve learned and made.

 

Question(s) 4: Has this course spurred you to think about yourself differently? And/or future goals and interests in life? Do you consider yourself a maker? What does that mean to you now that it didn’t at the beginning of the semester?

Some questions to help your thinking: What does it mean to you to call yourself a maker (or not)? Who do you think should call themselves a maker? Early on you read a quotation from Seymour Papert who suggested the most significant learning is a) hands-on and b) personally meaningful. Does that quotation mean more to you now than it did at the beginning of the semester? What does it mean to you? Did you experience any learning this semester that fit this definition? Did the hands-on nature of the class make your learning more significant? Why and how?

 

Makerspaces encourage the development of both the technical and the creative aspects of people. It’s a very hands-on and practical area and also open toward people. I think one thing this course has changed in me is that it has helped me want to learn about not just why, but also how things work. I guess this means that I’m a maker.

Notwithstanding, ultimately being a maker is up to how you define it. If you make things, does that make you a maker? There are some specific things that people consider a part of makerspaces but I question that they are requirements to be considered a maker. In my opinion, if you can consider yourself a maker, then you are one.

I think making something hands-on and meaningful is definitely important, and I think I’ve accomplished this during the course of this semester. I think understanding makerspaces develops as you do it more. It’s a constant learning experience for everyone and it doesn’t stop.

 

Rules:

Setup

  • Requirements: 2-4 players, game board, barriers, hearts, and power-ups
  • Each player selects one character.
  • Each player receives three hearts (lives).
  • Starting from the youngest player, going clockwise, place a power-up on the board until none.
  • Starting from the youngest player, going clockwise, place a barrier on the board until none.
    • During this process, all players should be able to reach each other at all times.
  • Starting from the youngest player, going clockwise, roll a die until the number 1, 2, 3, or 4 is rolled. Place your character on the spawn point that matches that number.
  • The youngest player starts first, and turns go clockwise.

 

Each turn

  • The player must move one square, either vertically or horizontally. Diagonal movement is not allowed, and players cannot cross barriers.
  • If the player walks into a power-up, pick up that power-up. You can only have one.
  • After moving, the player can then choose to attack a player or a barrier if they are able to, given their power-up.

 

Attacking

  • Unlike chess, you don’t move to the opponent’s square after the attack.
  • A player can attack other players differently depending on their power-ups (see below).
  • If the player chooses to attack another player:
    • The attacker and defender each roll a die.
    • If the attacker’s roll is higher, the attack is successful.
    • During any of these steps, if you roll a tie, both reroll.
    • Else, the attacker rolls a second time. If this roll is higher than the defender’s original roll, the attack is successful.
    • If the attack is successful, the player returns a heart to the bank, forfeits their power-up at the current spot, and is moved to ANY respawn point of their choosing. Discard the attacker’s power-up.
      • If the defender will have 0 hearts, they are eliminated from the game.
    • If the attack is unsuccessful, end the turn.
  • If the player attacks a barrier instead, then just remove the barrier.

 

Power-ups

  • Offensive power-ups:
    • None: Can only attack from any adjacent tile in all directions (like a chess king).
    • Laser gun (x4, GREEN): Can attack a player in any tile in the same X or Y axis. Does not penetrate barriers.
    • Sword (x4, RED): Attacks like no power-up, except you can attack barriers (to remove them) as well.
  • Defensive power-ups:
    • Lucky coin (x2, YELLOW): If this player is attacked at any time, add +1 to the defender’s rolls.
    • Speedy (x2, ORANGE): This player can move two squares instead of one each turn. Lasts until the player dies.
    • Teleporter (x2, BLUE): This player can choose to teleport to a respawn point of their choice during any turn, as a replacement for their movement phase.
  • Power-ups are single-use and most are discarded after they are used, except for the lucky coin and speedy.
  • Players can only have one power-up at a time, but can be swapped (the other one is discarded).
Continue Reading

Final Project

Question 1

For the final project, I have created a turn-signal sweater/jacket. This jacket is designed for bikers to use, especially at night. When it is dark outside, it can be dangerous for those who are in bicycle to bike, since they will not be able to signal if they’re going to turn left or right. With this jacket/sweater, they can give a signal to other vehicles on the road. By pressing the button on the respective sleeve of the sweater, the lights on their back will blink, indicating the direction that they are turning.

Before this project, I thought that making this project is going to be difficult and complicated. That is because I have never used the materials that are required to be used, such as washable LED, conductive threat and Adafruit Flora. Since I’m not experienced with coding or have any experience on the board, I had some difficulties getting the code to the circuit. I looked for helped online, visiting the Adafruit website, YouTube and other tutorial websites, but I still could not get my circuit to work. Fortunately, after seeking help from the Fab Lab staff, I was able to figure the code out. I’m certainly proud for figuring out how to set up the circuit. Certainly, I did get a lot of help from Jess, but I did try to sketch out a circuit that I think would work and to my surprise, I got it almost correct!

initial rough sketch

Circuit was successfully attached!

Overall, I am very satisfied with my sweater! Nevertheless, if I have more time, I would do several things differently. First, I would get a darker jacket. Since the conductive thread is dark grey, I think by using a darker color will hide it, making the sweater even more seamless. Although the flora, conductive thread and the LED lights are washable, I’ve been told that too much wash would erode the conductivity. Thus, to prevent this, I would make an insert that can be taken off and be washed. Alternatively, considering that we’re all college students, moving the circuit to a backpack would be cool too!

Final Design (With pocket to store battery)

Final Design: Video

Question 2

For this final project, I have the following learning goals:

  1. I want to challenge myself to create something that is useful to myself and make it usable in everyday life, instead of just a rough concept.  

After my project is done, I’m quite satisfied with what I have. Surprisingly, the project that I made is pretty useful in real life! However, I do regret using a pink sweater for the base. Initially, my plan was to use a black zip-up hoodie that the user can take on/off easily. However, I do not have any spare zip-up hoodies, nor do I have a black sweater. Because the sweater is so light in color, the conductive thread became so apparent against the fabric. Nevertheless, I still think that the final project is still useful. With Adafruit Flora, conductive thread, and the washable LED lights, the sweater is waterproof and washable. I have also sewed a piece of fabric on it to create a pocket to store the battery. Thus, the battery won’t be dangling out when the user is wearing it.

 

  1. I want to push myself outside of my comfort zone by doing something I’ve never done before, using the Lilypad Arduino/Adafruit Flora and sewable circuits. This means I will have to do research on how they work and how to use them and ask the Fab Lab staff for help. 

While I have learned how to use Arduino Uno, I never actually used a different board before. Being a business student, coding is really out of my comfort zone. Based on a tutorial I found online, I was supposed to use the Lilypad Arduino. However, I found out that this was not available at the Fab Lab but an Adafruit Flora would work perfectly as well. I decided to try using the Adafruit Flora and seek the internet for help. However, I found little to no help at all online. I decided to ask around the Fab Lab staff to help me and found out that Jess from the Fab Lab had done similar projects before. Thus, with her help, I was able to work on the code and the circuit.

 

As I look through my past assignments and my past lab assignment write-ups, I found out that I have certainly stretched my creativity over the past semester. I would never call myself a ‘maker’ before. I have always felt that I am someone who likes to stay in her comfort zone and is someone who would always take the easy way to do stuff. However, the assignments have challenged me to do many things that I have never done before, learning about tools like 3D printing, laser cutting, circuit making and many more! As I learn about these tools, I wonder what other things I can create by using the tools.

 

Question 3

As I looked at the things that I made earlier, I noticed how the things I made started out with things that are really simple and ‘safe’ to do. However, as the semester goes, I started to make things that are more interesting. Sure, I did look at the internet for some inspiration, but I did put on my little touch on it to personalize the result. Although my project might not always look as good as the ones that I try to get inspiration from, I am still very proud of the result. I have also become more confident with what I do and am more willing to try. With that, I often go ahead with my gut and see if it works out. Often when it doesn’t, I would trace back what I did and try again. This is especially true with the pom-pom bot assignment. With this final project, I was also able to show resilience. There were many times during this project where I felt that the project was too difficult and wanted to give up to do something easier. Nevertheless, I managed to push my way through and complete the project. 

 

Question 4

There are certainly other makers out there who are making life-changing innovations or something that no one has seen before. Me, on the other hand, is an amateur who only know how to operate the tools in the most basic way. With that in mind, I often think to myself, “does this make me be a maker?” This is still a debate that I often I have with myself. Evidently, often my ideas are not that original. Considering that I am a business major, I also often think, are any of the things I learned in this class going to be useful? However, just like Seymour Papert suggested, the most significant learning is a) hands-on and b) personally meaningful. In that case, I have learned a lot. It is true that what I’ve learned in this class will not be as beneficial as my other business classes when I enter the corporate world. Nevertheless, throughout the class, I have constantly challenged myself to do things that are outside my comfort zone and things that I never do before. These soft skills are certainly important not only professionally, but personally as well. I also like the fact that being able to create new things, I was able to express myself in the things that I create.

 

 

 

Continue Reading

Final Project: MIDI Controller – Arun Abraham

Question 1:

For my final project, I sought to create a Piano MIDI controller that I could potentially use with a DAW (digital audio workstation) when producing/recording music for myself in the future. MIDI controllers are typically somewhat pricey, so I thought this would be a cool alternative.

Wooden piano board created using Inkscape and the Epilog laser.

Initial Raspberry Pi testing before I switched over to the Arduino.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Some of the challenges I faced when creating this project were with executing on the initial project conception with using a Raspberry Pi. I found a lot of difficulty with setting up the Raspberry Pi and had to continuously get more and more equipment for it to fully work, and even then, I had to scrap the idea because it wouldn’t have worked as smoothly as an Arduino would. I lost a lot of time trying to setup the Raspberry Pi before switching to an Arduino.

The Adafruit MPR121 sensor with wires and metal pins soldered to it,

Example code that combined the MPR121test file that check each of the 12 touch sensors on the board with a tutorial on sending MIDI messages. The results can be seen in the Serial. This was a prototype that had problems because of the overlap of sending data through Serial multiple times.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another challenge I faced was with soldering, something I was relatively new to. I had soldered once before 7 years ago and had decided at that time that I would never do it again because it was difficult for me. Luckily, it turned out mostly fine this time, but one of the wires that was soldered didn’t have a great connection to the Adafruit MPR121 board. Another challenge I faced was with getting the touch capacitive data from the Adafruit MPR121 to be translated to MIDI messages that would be read by the computer and any MIDI software or DAW. I tried to do this originally all with the Arduino code but found that I needed a Python script to translate the Serial input from the Arduino into MIDI messages instead. In the videos below, you can see how I experimented with MIDI messages apart from the touch sensors, in order to get that working first. In the first video, I was able to get MIDI data to send from the Arduino but it wasn’t connect to the MIDI player. In the second video, it played through the MIDI player by means of a virtual MIDI port created using the LoopMIDI software and Hairless MIDI <-> Serial Bridge to send the Serial data to the port, which was then set as the MIDI input for the MIDI software I used (Virtual MIDI Piano Keyboard). 

The last challenge that I faced was with getting the MIDI messages to go to the MIDI output device of choice. I was easily able to have the computer output sound when I touched the sensors, but it needed to play through the device, where I would see the piano keys on it being pressed down as I touched it. I had to use a variety of different software to get this work, including a virtual MIDI port, but it ended up connecting smoothly after trying out the different settings and figuring out what worked!

The final setup of the Arduino with the wooden board, sensors, alligator clips, and foil for touch.

The final computer setup with virtual MIDI port through LoopMIDI, the Python script running, and the MIDI player open.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I am most proud of the fact that I was able to use my prior programming knowledge in Python to process the data from the Arduino! I found it cool that I could use the skills I learned from this class and combine it with my prior skills to create something that was even useful for my own music projects!

Question 2:

Learning Goal 1: I want to challenge myself to incorporate a Raspberry Pi into my project because even though I am a computer science student, I do not feel comfortable dealing with circuits, wires, and microcontrollers/microcomputers (I avoided hardware and ECE classes).

Unfortunately, I was unable to meet this goal because of unexpected circumstances with the Raspberry Pi and the corresponding equipment for it. However, I was still able to use a microcontroller in the Arduino and used libraries that I had not used before in order to make this project work. Likewise, I was able to face my discomfort with using circuits and wires and even soldering as I used the Adafruit MPR121, a new sensor, with the Arduino. I learned that the Arduino is capable of doing a lot more than I originally thought! While I thought it was a very basic computer simply by the fact that it runs a continuous loop, I was surprised to see the sheer number of libraries for it. It was cool to experiment with the different MIDI libraries and learn more about the Serial library as well. It was definitely for the best that I used the Arduino rather than the Raspberry Pi because I think the Raspberry Pi would have added a complexity that wasn’t really needed for the scope of this project. As a result, I am happy with the outcome and the implementation!

Learning Goal 2: I want to personalize the design by adding my own touches to a standard design so that I can push my creativity.

I feel that I was able to personalize the design by creating the piano keys completely from scratch in Inkscape. It was very simple to design, but it was cool to have used the Epilog Laser to raster the piano keys onto plywood for the MIDI controller. Most designs online used aluminum foil or conductive ink, so they were usually constructed on paper, so it was cool to see how it would look on a piece of engraved wood. I would have liked to add color to it somehow, but likewise, the black keys were done with raster, which would have been covered up if I had included a sticker or cardstock by using the Silhouette cutter. Likewise, the foil covered up most of the wood, but it was necessary in order to have the alligator clips attach to it and have the keys be conductive. Though I had a picture of what the board would ideally look like in my head, I learned that it is near impossible to have it look exactly like a design concept simply because all of the tools and material might not be in place. I learned that there is a great need for flexibility, adaptability, and compromise when it comes to the design process!

 

Question 3:

As I already stated, I think I learned that there is a great need for flexibility and adaptability when it comes to designing and making something. As a computer science student, I’ve seen it as I’ve written code and worked on different projects, but when it has come to this class and the mostly hands-on work, I’ve come to see even more how ideas may need to be scrapped and I have to start over from the beginning when things go awry. It really takes a lot of patience and planning in order to make a good product, and it may even take multiple prototypes to get something working as you originally planned. It may even require tweaks to the original design and omission of things that just aren’t feasible with time, material, or equipment constraints.

One thing that I’ve definitely become more comfortable with is working with hands-on projects. In the past, I steered clear of these projects because I feared the attention to detail that was necessary for these sorts of projects, but I found myself enjoying the projects in these classes (especially the Arduino units) as I became more accustomed to working with my hands. I definitely feel more confident as a maker and feel like my creativity really developed this semester.

 

Question(s) 4:

I think this course definitely has caused me to think about myself and my potential differently. Apart from coding, I was very hesitant with other forms of engineering, but now, I feel more adventurous and willing to try out new things related to making. Likewise, I felt like my creative capacities were always limited to the arena of coding, but now, I see how I can be creative with other things, like when using Inkscape for laser cutting and stickers or the different sensors and outputs for the Arduino. I think I feel a lot more confident when it comes to potential independent projects in the future, and I would be more willing to do craft work in the future as well.

I think I considered myself a maker before because of my computer science background and the numerous projects and apps I worked on before, but I definitely would identify more as maker now after this class because I’ve had the opportunity to work on several different kinds of projects to expand my skill set.

I think that the term maker really can be a broad term to refer to anyone who can create or recreate an item by their own hands, starting at the design process and then progressing to construction and testing until a final product is achieved. I feel like this is definitely in line with Seymour Papert’s quotation as well because being a maker requires a person to do a lot of hands-on work and requires them to be original in their ideas, which usually makes it personally meaningful. This quotation definitely means more to me now in the context of making because having to design my own projects and think about how they would benefit me or be interesting to me was directly correlated with how driven I would be to complete the project. Unlike with required projects in past classes, I found myself much more interested in these projects once I had come up with an idea. The drive to complete the project that came with the idea would prompt me to learn new things in order to complete these projects and do them well, so I feel like I definitely learned a lot as a result of that. The hands-on nature definitely played a big part because it somewhat forced me out of my comfort zone and forced me to experiment with different ideas so that there would be a learning by trial and error.

Continue Reading

Final Project – Motion Sensor Solar Powered Desk Lamp

Question 1:

For this final project, I made a solar powered motion sensor desk lamp controlled by Arduino. The lamp is made by cutting a block of wood into three pieces. Two of the longer blocks are for the stand which is connected to the other block for the head with a screw, winged bolt, and washer to make the head adjustable. I faced a lot of challenges in the project which are to create the solar panel, connecting it to the Arduino, programming the Arduino and doing the woodworking as I have never had any experience whatsoever. I am really proud of building the solar panel with the help of Brandon. Never I would have thought that I would literally build the solar panel circuit myself (thought of buying it at first), but after much experiments, it was done!

 

Question 2:

First, my learning goal was to get more of hands-on experience on building things. I come from Indonesia and woodworking was not something that was really taught to students however, crafting was something that has always intrigued me since childhood. From that, I hoped to gain the basic skills in woodworking and using power tools to create new products from materials such as wood. After doing the project, I have gained the basics in modeling materials such as cutting the wood using an electric saw and drilling using the heavy machine with supervision from the representatives in charge of safety.

 

The next learning goal I had in this project was to do something more on the engineering side and gain more technical skills. Although I initially thought that I am a maker by heart, this ideology does not really translate using the technical skills that I possess and have to apply to the project. So, by the end of the project, I hope to gain knowledge about circuits and power conversion. After doing the project, although not much, I did gain this knowledge such as if you are using a parallel circuit, you will get an even voltage distribution and more current (yeah, this is what worked for my project).

This learning goal also aided me in another personal goal, which is to get closer to the people in the FabLab. Earlier in the semester, I was so mesmerized with what the members of the lab are doing and really wanted to get involved. However, as the semester, I did not have that much time to come to the lab aside from class hours. So, from this project, I vowed to at least to get closer with someone (aside from my awesome instructor Emilie). After doing the project, I did get closer to one person, Brandon. Brandon was really helpful during the entire project. He helped taught me how to create the solar panel power source and how to connect them to the Arduino. Moreover, he also helped me a lot with the coding part to program the motion sensor and the lights.

 

All in all, I think that my project was a huge success in my own metrics. Never would I expect, an accounting student like me to create something that so far away from the education discipline I have been going through for the past 4 years and created something that does not require me to make balance sheets or income statements. Although it is successful according to me, there is definitely room for improvements. First, I should have made the cable to the solar panel longer so that it can be moved more freely. The lamp can be plugged to a portable power source, hence it could be a portable lamp. In regards to that, I would think that making the body of the lamp and the Arduino box waterproof would definitely take my project to the next level. I really think that my project is important as it is definitely a step into the future. I think climate change is destroying our world and finding an alternative power source is a step to a better world. The motion sensor is there to limit the power usage as the lamp will turn off if you do not need it anymore and the lamp is entirely solar powered.

 

Question 3:

This class has taught me a lot in regard to technical skills as well as self-development skills. One thing that I learned from this class is that it is okay to make mistakes. As a business major, we were taught that it is imperative to not make mistakes as it would hinder the efficiency of the whole business process. Although not making mistakes is important, mistakes are valuable experiences that remind us that if one way does not work, you need to find an alternative to it. From mistakes, I learned that although a solution might logical sense, it might not work the same when applied due to other factors. This brings me to another lesson I learned through the whole experience, which is to be resilient. I am not the most efficient and smartest person when it comes to making the projects given in the class. It took more time for me in doing and also designing the projects. However, the class taught me that I have to struggle and stay resilient in finishing the tasks, which actually bore wonderful fruits. I can say that I am proud of the creations I made in the class (although some were really terrible, I know). One thing I found comfortable doing is actually using the Arduino. I was always inclined to this part of the class for its limitless ability. At first, it was hard, but after doing 4 projects with it (2 Arduino projects, 1 iteration project, and final project), I came to enjoy doing it and might I say be decent at it. 

 

Question 4:

Before taking this class, I thought that a maker is someone who makes something from nothing to something. However, this class has taught me that there is no one single definition for a maker as everyone has different and unique making processes. My definition of a maker is someone using tools to add value to something and tells stories using their creations (kinda borrowed the quote from Adam Savage[1]). By that definition, I am definitely a maker. Every learning experience I obtained from the class had been hands-on and meaningful for me in different ways. I definitely think that the quote means more to me now than it had at the beginning of the semester. With the skills, I gained and the understanding of the lessons’ objectives, I can confidently say that the class had given me a more holistic learning approach to making as it encompasses education disciplines as well as backgrounds. The hands-on experience helped me understand the matter at hand as I do not need to visualize the concept, as I can just try it out with the devices that are available in the lab.

 

 

 

[1] https://makezine.com/2016/04/01/what-is-a-maker-you-are/

 

Continue Reading